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A method for estimating errors in calculated strains 
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A b s t r a c t - - A c c u r a t e  strain estimation requires tests to identify whether natural distributions of strain markers 
satisfy the assumptions of the method used. To evaluate the capabilities of different strain calculation and 
statistical methods for this purpose, simulated ellipse distributions of varying axial ratios and orientations are  
strained and analyzed. If bedding and cleavage cannot be measured, statistical tests on strained ellipse 
distributions do not produce useful results because of the inseparable effects of strain, initial ellipticity and initial 
preferred orientations. Tests on data restrained using averaged ellipse matrix values can indicate initial preferred 
orientations and the nature of the axial ratio distribution. The most useful tests are the chi-square tests of the 
ellipticity and orientation distributions of the restrained data. The Rayleigh test cannot identify initial preferred 
orientations in this type of restrained data. 

INTRODUCTION 

MA~Y methods exist for calculating strain from de- 
formed elliptical markers (see review by Babaie 1986). 
Most methods assume the strain markers were initially 
elliptical, with uniformly varying ellipticities and orien- 
tations. However, a preferred orientation is common in 
undeformed rocks. It is important to identify strained 
samples where the randomness assumption fails, so that 
the strain estimates may be viewed with suspicion. 
Because the effects of strain and initial preferred orien- 
tation can be similar, this identification is not always 
possible or quantitatively precise. 

Existing methods for detecting initial preferred orien- 
tations require some combination of data on strain 
history and the orientations of bedding, extension and/ 
or cleavage, and initial markers (Borradaile 1984, 1987, 
Yu & Zheng 1984, Wheeler 1986b). The method de- 
scribed here is less sensitive but more general. It can be 
used where bedding and cleavage are not visible, or 
where the elliptical strain markers do not record the 
complete bedding deformation (e.g. the pre-lithification 
deformation of Hudleston 1976). It applies to generally 
oriented sections in three dimensions, where the cleav- 
age trace does not necessarily parallel the extension 
direction of the clasts (Ramsay 1967, Borradaile 1987). 

The statistics used here to test the strain data are 
based on the inferred initial shapes and orientations of 
particles. In the destrained state, the complexly interact- 
ing effects of strain magnitude and orientation are 
avoided ('restrained' refers to strained ellipses from 
which the measured strain has been removed; Borra- 
daile 1984). Useful parameters are the deviation of the 
ellipse orientations from a random distribution, their 
average axial ratio, the dispersion of the axial ratios and 
the type of distribution fit by those ratios. Strain analyses 
yielding anomalous values (e.g. statistically non-random 
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initial orientations) can be rejected on the grounds that 
fundamental assumptions of the strain determination 
technique are being violated. The destrained clast 
shapes and orientations can be compared with actual 
measurements on undeformed rocks (e.g. Bouiter 1976, 
Hoist 1982, Wheeler 1984). In this report, specified 
initial distributions of ellipses (Fig. la) are numerically 
strained and then analyzed to illustrate the behaviour of 
the statistical parameters (Fig. 1 and Table 1). 

STATISTICAL TESTS FOR STRAINED 
SAMPLES 

Methods of strain determination 

An objective, programmable, rotation invariant 
method is needed to efficiently calculate the strain 
ellipse from a sample with deformed elliptical particles. 
Paterson (1983) compared different methods of strain 
determination on cut faces. Of the algebraic methods, 
that of Shimamoto & Ikeda (1976) gave the best strain 
estimate. It was the most precise of all methods, particu- 
larly with small sample sizes. Only the theta-curve 
method of Lisle (1977b) generally gave lower strain 
estimates, which should be the most accurate (Siddans 
1980). However, it is less precise, and it suffers from its 
subjective dependency on the chosen theta-curve 
spacing as well as the fineness of strain increments 
(Wheeler 1984). Robin's (1977) method, favored by De 
Paor (1988) for numerical determinations, produces 
similar results (Babaie 1986). For these reasons, strains 
are calculated with the Shimamoto & Ikeda (1976) 
method below (see also Wheeler 1984). Criticisms of 
their technique (Wheeler 1986a, De Paor 1988) only 
apply to the three-dimensional case. 

Destraining 

Useful statistical tests of strain estimates must be 
based on the restrained state, circumventing the 
strained state where the effects of strain, initial elliptici- 
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Fig. l. (a) Initial ellipse distributions used for the strain simulations, from data in the first four columns of Table 1. Axial 
ratios plot radially, major-axis orientations plot tangentially. The number on the middle right indicates the number of 
ellipses represented by each dot. 'P.O.' means preferred orientation. (b) Plot of applied strains against those calculated by 
the Shimamoto & lkeda (1976) method for each distribution in (a). (c) Major-axis orientations of the calculated strain 
ellipses. (d) & (¢) Results of the chi-squar¢ test for uniformity of destrained ellipse orientations for distributions with <,50 

and >50 ellipses, respectively 

ties and preferred orientations are difficult to disentan- 
gle. Methods of destraining which rely on minimizing a 
chi-square variable to calculate the strain (Lisle 1977a, 
Peach & Lisle 1979) are inaccurate because they con- 
sider only the individual orientations of the ellipses (¢),  
but not their corresponding ellipticities (Rf). In mathe- 

matical simulations the vector mean defining the strain 
orientation may vary more than 10 ° from the true strain 
ellipse axis (Borradaile 1984). 

As a preferable alternative to chi-square minimiz- 
ations, methods employing the mean ellipse matrix use 
all of the information available from the strain markers. 
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Table 1. Summary of results from simulations of strained ellipse distributions 
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Test No. of ~ Intid Applied Harmonic Re q~ Re Lm, .m Chi-square values StdDev 
m ~ Ratios Or~ l ioes  Strain M.an Ea~ Sel ~ 0 I~ kliB~ l~ 

A 11 1-2,0.1 d o *  1.0 1.46 1.47 1.47 0.(30 ° 12.4 0.09 6.82 R 0.27 0.27 0.14 
• " 2.0 2.86 2.93 2 .93  0.0(3 ° 1.24 0.09 8.27 R 0.27 0.27 0.14 

• 3.0 4.30 4.40 4 .40 0.00 ° 12.4 0.02 11.18R 0.27 0.27 0.14 
• 4.0 5.72 5.68 5 ,86  0.00. 124 0.09 11.18 R 0.27 0.27 0.14 

• " 6.0 8.59 8.79 8 .79  0.00* 1.24 0.09 11.18R 0.27 0.27 0.14 

B 11 1-2,0.1 al 45,, 1.0 1.43 1.47 1.47 45.93 ° 12.4 0.09 7.55 R 0.27 0.27 0.14 
• 2.0 2.28 2.26 2 .24 12.95 ° 1.24 0.09 11.18R 0.27 0.27 0.14 
• 3.0 3.34 3.32 3.27 7.64 ° 1.24 0.09 11.18R 0.27 0.27 0.14 
• 4.0 4.42 4.40 4 .33 5.50* 12.4 0.09 11.18 R 0.27 0.27 0.14 
• 6.0 6.59 8.59 6 .47 3.56" 124 0.09 11.18R 0.27 0.27 0.14 

C 18 all 2.0 0-170", 10' 1.0 2.00 1.00 1.00 0.00* 2.00 0.00 0.22 0.22 0.22 0.00 
2.0 2.24 2.10 2 .00  0.00* 2.00 0.00 0.22 2.44 2.44 0.00 
3.0 3.11 3.23 3 .00 0.00* 2.00 0.00 0.22 7.78 R 7.78 R 0.00 
4.0 4.08 4.36 4 .00 0.00. 2.00 0.00 0.22 2.00 2.00 0.00 
6.0 6.05 6.63 6 .00  0.93 ° 2.00 0.00 0.22 7.33 R 4.67 R 0.00 

D 90 1-3, 0.5 0-170 °, 10" 1,0 1.72 1.00 1.00 0.00 ° 2.10 0.00 3.56 72.0 R 90.0 R 0.71 
2.0 2.35 2.11 2 .00  0.00* 2.10 0.00 3.56 72.9 R 90.0 R 0.71 
3.0 3.15 3.25 3.00 0.00* 2.10 0.00 3.56 74.0 R 90,0 R 0.71 
4.0 4.10 4.40 4.00 0.93 ° 2.10 0.00 2.72 72.0 R 90.0 R 0.71 
6,0 6.06 6.70 6 .00 0.00* 2.10 0.00 2.72 82.9 R 90.0 R 0.71 

E 28 all 2.0 0,170.,10°; 1,0 2.00 1.15 1.13 0.93 ° 1.98 0.09 0.29 0.68 0.86 0.17 
• -45-46°,10. 2,0 2.55 2.42 2 .26 0.93 ° 1.98 0.09 0.29 0.86 0.86 0.17 

140 2,0 2.55 2.42 2 .26  0.93 ° 1.98 0.09 10.00 99.29 R 99.29 R 0.16 
28 3,0 3.60 3.72 3 .39 0.00 ° 1.98 0.09 0,29 0.86 0.88 0.17 

4,0 4.72 5.02 4 .52 0.00" 1.68 0.09 0.29 0.86 0.85 0.17 
• 6.0 7.01 7.61 6 .78  0.00* 1.98 0.09 0.29 0.86 0.86 0.17 

F 27 all 2.0 0-170",10°; 1.0 2.00 1.16 1.14 45.00 ° 1.97 0.10 0.41 2.19 2.19 0.18 
5-8P,10* 2.0 2.24 2.13 2 .03 4.84 ° 1.97 0.10 0.41 2.19 2.19 0.18 

3,0 3,11 3.25 3 .03 2.74 ° 1.97 0.10 0.41 2.19 2.19 0.18 
4.0 4.06 4.38 4.04 1.95 ° 1.97 0.10 0.41 2.19 2.19 0.18 
6.0 6.05 6.64 6.05 1.26 ° 1.97 0.10 0.41 2.19 2.19 0.18 

G 80 . all2.0 0",46 o. 1.0 2.00 1.00 1.00 0.00* 2.00 0.00 120.0 R 220.0 R 220.0 R 0.00 
• 90., 135 ° 2.0 2.03 2.10 2 .00 0.00 ° 2.00 0.00 120.0 R 220.0 R 220.0 R 0.00 

4,0 3.94 4.35 4 .00 0.00* 2.00 0.00 120.0 R 220.0 R 220.0 R 0.00 
6,0 5.88 6.60 6 .00 0.00* 2.00 0.00 120.0 R 220.0 R 220.0 R 0.00 

H 57 all 2.0 0-90", P 1.0 2.00 1.52 1.46 45.00 ° 1.76 0.17 26.68 R 26.68 R 20.37 R 0.29 
1.5 2.05 1,81 1.75 20.45 ° 1.76 0.17 23.53 R 26.68 R 20.37 R 0.29 

• 2.0 2.20 2.31 2 .23  12.95 ° 1.76 0,17 26.68 R 26.68 R 20.37 R 0.29 
4.0 4.02 4.48 4.32 5.45 ° 1.76 0.17 20.37 R 26.66 R 20.37 R 0.29 
6,0 5.97 8.71 6 .46  3.$3 ° 1.76 0.17 20.37 R 26.68 R 20.37 R 0.29 

In the 'Axial Ratios' and 'Initial Orientations' columns, the first numbers give the range of values, and the numbers 
following the comma give the value increment within that range. 

Symbols and abbreviations are: Rs, calculated strain value; Elliott and S&I, calculated by Elliott (1970) and 
$himamoto & Ikeda (1976) methods, respectively; ~,, calculated maximum extension orientation; Ro, average 
initial ellipticity; L . ~ . ,  mean resultant length of orientation vectors; Ri, initial axial ratio; Std Dev, standard 
deviation. R after numbers in the chi-square columns signifies rejection of the null hypothesis at the 5% level. 

Using the calculated strain (by the Shimamoto & Ikeda 
method) for the section, equations from Elliott (1970) 
and Hoist (1982) are used here to destrain the measured 
ellipses, yielding their inferred initial orientations, 0, 
and axial ratios, Ri. Several statistical tests may then be 
used to determine the nature of the destrained ellipse 
distribution. Tests based on principal axis orientations 
are the most widely employed, so they will be discussed 
first. 

Axial orientations 

A fundamental assumption in strain calculations is 
that the original ellipses were oriented randomly. For an 
unknown mean direction, the Rayleigh test is the best 
choice to test the null hypothesis of uniformity of orien- 
tations (randomness for a large population) against an 

unspecified probability density distribution (Curray 
1956, Durand & Greenwood 1958). The test depends on 
Lmean. First consider the destrained orientations as unit 
vectors from a 180 ° range, then double them. Lmean is 
the vector magnitude of the mean of the vector com= 
ponents. A zero Lmean indicates the orientations are 
balanced around the circle. Uniformity is rejected for 
large values of Lmean (critical values given by Mardia 
1972, appendix 2.5). 

The Rayleigh test cannot distinguish uniformity (e.g. 
C and D of Fig. la) from angularly symmetrical or 
balanced concentrations (G of Fig. la). In this case, the 
non-uniformity may be revealed by a chi-square test 
using the frequency with which 0 observations fall in 
separate angular sectors. My data are divided into four 
equal angular classes for less than 50 ellipses, and 10 
classes for more, so that at least five orientations can be 
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expected in each class (Peach & Lisle 1979). The number 
of ellipses in each sector is compared with the expected 
number for a uniform distribution, and the squared, 
normalized difference is summed. Uniformity is rejected 
for large values when compared with standard chi- 
square tables. 

Borradaile (1984) suggested a runs test to sense clus- 
tering of orientations in adjacent classes. However, 
Borradaile found the runs test often rejected the ran- 
domness hypothesis for populations of less than 75, even 
though his strain simulation started with random distri- 
butions. Such a test does not seem useful for common 
sample sizes. 

Axial ratios 

A full description of the initial state of particles 
includes the distribution of their axial ratios (Boulter 
1976). Their average initial ellipticity, Rd, is found as 
follows. Wheeler (1984) devised a single measure of the 
initial ellipticity of deformed markers, termed the "dis- 
tribution spread invariant", J. J is the square root of the 
determinant of the averaged final ellipse matrix of Shi- 
mamoto & Ikeda (1976), with the desirable character- 
istic of strain invariance. J only measures the average 
initial ellipticity, with no direct information on its vari- 
ability (contrary to Wheeler 1984, 1986a). J is related to 
Rd by 

J = cosh (Ioge Rd) 

(Wheeler 1984, equation A25), and so 

Rd = J + (./2 _ 1)1/2. 

As with J, Rd does not measure the dispersion of the 
initial axial ratios. A large Rd likely indicates a large 
dispersion, because most distributions include near 
spherical particles. However, this implied measure of 
variance is clearly not in a standard form comparable to 
standard statistical parameters. 

Measures of the variance are more informative when 
compared with a probability distribution. Obviously the 
Ri cannot be uniformly distributed, since they have a 
minimum by definition at Ri = 1, but no specific maxi- 
mum. Two other distributions seem likely. The normal 
distribution commonly describes the variation of ran- 
dom variables. However, with a distinct minimum axial 
ratio and a stronger concentration usual near that mini- 
mum (e.g. Pfiffner 1980, Borradaile 1987), a log-normal 
distribution better describes that skewness. For 
example, a normal distribution was accepted for only 
34% of 90 sample faces from an Archean greenstone 
belt, but the log-normal distribution was accepted for 
77% of them (Schultz-Ela & Hudleston, manuscript in 
review). 

A chi-square test similar to that described above 
compares the observed Ri distribution with normal and 
log-normal distributions. To relate the data to standard 
tables of the distributions, the Ri and In (Ri) are con- 
verted to standard normal form. Normal curve segments 
of equal probability bound classes. The null hypothesis 
of a normal or log-normal distribution is rejected for 

large values of the chi-square variables. Because both 
the mean and standard deviation are estimated from the 
data, the degrees of freedom are three less than the 
number of classes (e.g. Davis 1986). 

STRAIN SIMULATION RESULTS 

To investigate the accuracy of the strain estimates for 
ellipses with various initial ellipticities and orientations, 
I started with a known ellipse distribution, applied a 
known strain, and analyzed the results. With no loss of 
generality, the maximum extension direction of the 
applied strain is always at 0 °. Figure 1 and Table 1 
summarize results for some of the simulated strains. 
Note that tests C and D have uniform initial orien- 
tations, and the remaining tests have preferred orien- 
tations. 

Strain determination 

Table 1 emphasizes the behavior of the various strain 
measures. The Shimamoto & Ikeda (1976) method 
yields the most accurate calculated strain values (Rs), 
even for distributions with initial preferred orientations. 
For a strong preferred orientation, the estimates for 
applied strains greater than 2 are less than 18% in error 
(tests B, E, F and H), except when a single orientation 
parallels the strain axis (test A). The corrected mean 
from the plot of Wheeler (1984) is calculated from 
similar equations, so would produce identical results. 
The higher values of the Elliott plot mean (Table 1, 
Elliott column) reflect the uncorrected distortion in- 
herent in that method (Hoist 1982, Wheeler 1984). 
Strains are overestimated for all tests with preferred 
orientations except G, comprising clusters of ellipses at 
45 ° intervals. Here the harmonic mean actually under- 
estimates the true strain, which in this case equals the 
matrix average. Possible natural examples with such an 
underestimate are reported by Babaie (1986). To under- 
score the importance of testing the destrained data, note 
the almost identical strains calculated for tests B and H, 
despite their radically different initial ellipse distri- 
butions. 

The estimate of the maximum extension direction, q~s, 
varies substantially (Fig. lc). For preferred orientations 
(e.g. tests B, F and H) the error decreases with increas- 
ing strain. The true average initial ellipticity is underesti- 
mated by Rd (Table 1), but not as severely as by 
arithmetic, geometric and harmonic means. 

Variations of the chi-square values with strain (Table 
1) largely stem from round-off errors for 0 values that 
coincide with class boundaries at 45 ° intervals. Thus, 
particularly for small samples the chi-square values are 
not rotationally invariant, the grouping effects noted by 
Harvey & Ferguson (1981). The number of ellipses also 
strongly affects the chi-square values (e.g. test E). A 
preferred orientation does not change the values much, 
because destraining removes some of the non- 
uniformity. 
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Orientation tests 

For fewer than 50 ellipses, the orientation chi-square 
value (Table 1, 0 column) has two degrees of freedom, 
while the Ri measures have only one. For 50 or more 
ellipses, the degrees of freedom are eight and seven, 
respectively. Using 5% critical values, the chi-square 
test rejects the null hypothesis of a uniform distribution 
in tests A, B, G and H (Figs. ld & e, and Table 1), which 
are the tests with the strongest initial preferred orien- 
tations. 

The Rayleigh test (Lmean in Table 1) does not reject 
the hypothesis of uniformity for any of the simulations. 
Indeed, a destraining procedure based on the assump- 
tion of uniform initial orientations will minimize Lmean 
(Harvey & Ferguson 1981). As the destraining removes 
more than the true strain for a preferred orientation, 
ellipses with a low initial axial ratio elongate nearly 
perpendicular to their initial orientation (as shown by Rd 
less than the true average initial ellipticity for tests A, B, 
E, F and H). In the Lme~n calculation these 'over- 
strained' orientations partially cancel out those still in 
the original preferred orientation, and the test accepts 
uniformity. In this regard, the chi-square test is more 
sensitive to initial preferred orientations, although natu- 
ral examples occur in which uniformity is rejected by the 
Rayleigh but not the chi-square test (Schultz-Ela & 
Hudleston, manuscript in review). For the same 
reasons, calculations based on chi-square tests of orien- 
tation (e.g. Peach & Lisle 1979, Borradaile 1984, 1987) 
would overestimate the strain more than the present 
method by attempting to return an initial preferred 
orientation distribution to non-existent uniformity. 

Axial  ratio tests 

The initial axial ratios were tested for fit to a normal or 
log-normal distribution (Table 1), although they were 
not chosen to simulate such distributions. The variable 
results of test C are a numerical artifact of a uniform Ri 
and a vanishingly small standard deviation. The results 
overall illustrate the strong sensitivity of the tests to 
sample size. Samples with more than about 50 ellipses 
yield reliable chi-square results for Ri, e v e n  with initial 
preferred orientations. 

The standard deviation of R i for distributions with an 
initial preferred orientation is too small, reflecting the 
excessive destraining which concentrates Ri around 
unity as some of the ellipse elongations shift to a new 
direction. 

CONCLUSIONS 

Straining known ellipse distributions of varying axial 
ratios and orientations illustrates the behaviour of 
different strain calculation and statistical methods. The 
averaged ellipse matrix method of Shimamoto & Ikeda 
(1976) calculates the known strains more accurately than 
methods based only on axial ratios or orientations. 

Statistical tests on strained ellipse distributions do not 
produce useful results because of the inseparable effects 
of strain, initial ellipticity and initial preferred orien- 
tations. Tests on data destrained with the Shimamoto & 
Ikeda (1976) values can indicate initial preferred orien- 
tations and the nature of the axial ratio distribution, and 
identify strain markers which do not meet the require- 
ments for accurate strain estimation. The most useful 
tests are the chi-square tests of the orientation and 
ellipticity distributions. The Rayleigh test cannot identi- 
fy initial preferred orientations in this type of destrained 
data. 

REFERENCES 

Babaie, H. S. 1986. A comparison of two-dimensional strain analysis 
methods using elliptical grains. J. Struct. Geol. 8, 585-587. 

Borradaile, G. J. 1984. Strain analysis of passive elliptical markers: 
success of destraining methods. J. Struct. Geol. 6,433-438. 

Borradaile, G. J. 1987. Analysis of strained sedimentary fabrics: 
review and tests. Can. J. Earth Sci. 24, 442-455. 

Boulter, C. A. 1976. Sedimentary fabrics and their relation to strain- 
analysis methods. Geology 4, 141-146. 

Curray, J. R. 1956. Analysis of two-dimensional orientation data. J. 
Geol. 64, 11%131. 

Davis, J. C. 1986. Statistics and Data Analysis in Geology (2nd edn). 
John Wiley & Sons, New York. 

De Paor, D. G. 1988. R~q~f strain analysis using an orientation net. J. 
Struct. Geol. 10, 323-333. 

Durand, D. & Greenwood, J. A. 1958. Modification of the Rayleigh 
test for uniformity in analysis of two-dimensional orientation data. 
J. Geol. 66, 229-238. 

Elliott, D. 1970. Determination of finite strain and initial shape from 
deformed elliptical objects. Bull. geoL Soc. Am. gl, 2221-2236. 

Harvey, P. K. & Ferguson, C. C. 1981. Directional properties of 
polygons and their application to finite strain estimation. Tectono- 
physics 74, T33-T42. 

Hoist, T. B. 1982. The role of initial fabric on strain determination 
from deformed ellipsoidal objects. Tectonophysics 82,329-350. 

Hudleston, P. J. 1976. Early deformational history of Archean rocks in 
the Vermilion district, northeastern Minnesota. Can. J. Earth Sci. 
13, 579-592. 

Lisle, R. J. 1977a. Clastic grain shape and orientation in relation to 
cleavage from the Aberystwyth Grits, Wales. Tectonophysics 39, 
381-395. 

Lisle, R. J. 1977b. Estimation of the tectonic strain ratio from the 
mean shape of deformed elliptical markers. Geologie Mijnb. 56, 
140-144. 

Mardia, K. V. 1972. Statistics of Directional Data. Academic Press, 
London. 

Paterson, S. 1983. A comparison of methods used in measuring finite 
strains from ellipsoidal objects. J. Struct. Geol. 5, 611-618. 

Peach, C. J. & Lisle, R. J. 1979. A FORTRAN IV program for the 
analysis of tectonic strain using deformed elliptical markers. Corn- 
put. & Geosci. 5,325-334. 

Pfiffner, O. A. 1980. Strain analysis in folds (Infrahelvetic complex, 
central AIps). Tectonophysics 61,337-362. 

Ramsay, J. G. 1967. Folding and Fracturing of Rocks. McGraw-Hill, 
New York. 

Robin, P.-Y. 1977. Determination of geologic strain using randomly 
oriented strain markers of any shape. Tectonophysics 42, T7-T16. 

Shimamoto, T. & Ikeda, Y. 1976. A simple algebraic method for strain 
estimation from deformed ellipsoidal objects---l. Basic theory. 
Tectonophysics 36,315-337. 

Siddans, A. W. B. 1980. Analysis of three-dimensional, homogene- 
ous, finite strain using ellipsoidal objects. Tectonophysics 64, 1-16. 

Wheeler, J. 1984. A new plot to display the strain of elliptical markers. 
J. Struct. Geol. 6,417-423. 

Wheeler, J. 1986a. Average properties of ellipsoidal fabrics: impli- 
cations for two- and three-dimensional methods of strain analysis. 
Tectonophysics 126,259-270. 

Wheeler, J. 1986b. Strain analysis in rocks with pretectonic fabrics. J. 
Struct. Geol. 8,887-896. 

Yu, H. & Zheng, Y. 1984. A statistical analysis applied to the Rt/¢ 
method. Tectonophysics 110, 151-155. 


